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Abstract

Following paper introduces the nonlinear method of determining the velocity of a vehicle before the 
impact-the Equivalent Energy Speed (EES). To estimate the magnitude of EES, the method utilizes 
the deformation work Wdef of the vehicle, defined by the quotient of deformation coefficient Cs 
and plastic deformation. Combined with the introduction of the B-spline tensor products and least 
square approximation with probabilistic weights, method shows promising results.
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1. Introduction

The three main factors deciding a road accident are: driver, vehicle and road conditions. 
Therefore, the most common causes of vehicle accidents are strictly related to those fac-
tors: driver’s lack of attention, forcing the right of way, inadequate sight distance, noncom-
pliance with traffic lights, inadequate speed when adverse driving conditions are present 
[2, 21, 22, 27]. When examining a road accident, an investigator has to collect data and 
analyze many variables, but one of the most crucial one is the vehicle velocity. Method of 
its determination is the main aspect of accident reconstruction.

Currently, the most popular methods of precrash velocity determination utilize a linear 
model [6, 7, 37]. This approach is based on an assumption that bk coefficient is the slope 
of deformation coefficient Cs [20, 36] and vehicle mass m. Such simplification comes with 
a higher error of velocity estimation [18, 19]. Therefore an alternative method was devised-
a nonlinear approach. This new method is based on three main assumptions:
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 • bk slope of nonlinearly dependent on Cs deformation and vehicle mass m.

 • bk slope is nonlinearly dependent on dent zone width Lt [9, 17, 24, 25].

 • it is possible to divide all cases into categories dependent on vehicle size, as in Table 1.

Tab. 1. Mini vehicle class conditions

Class Mini

Wheel base [mm] ≤2408

Wheel track [mm] ≤1298

Length [mm] ≤4059

Width [mm] ≤1544

Mass [kg] ≤900

The mathematical model for this new approach was developed based on NHTSA data-
base C [28, 29]. National Highway and Traffic Safety Agency, among others, enforces the 
Federal Motor Vehicle Safety Standards and assesses the safety of vehicles in US. The 
assessment is based on numerous crash tests performed by NHTSA. Among those tests 
there are the frontal collision crash tests that are the scope of this method. As mentioned 
above, vehicles can be divided into categories and the NHTSA database allows for a divi-
sion based on vehicles’ weight.

The nonlinear model is based on deformation work of the collision. The EES value [5, 30, 31, 
34] can be found using the following equation (1):
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2. Nonlinear approach

The dependencies presented in prior section govern the crash site reconstruction and lay 
the base for the nonlinear method. NHTSA tests that were taken into consideration when 
preparing the model were frontal collision at 50 km/h. The most crucial difference between 
the linear and nonlinear approach is the assumption of the EES speed and deformation 
CS relationship [10, 12]. To simplify the calculations and thus increase the computation 
speed this dependency, up till now, was assumed to be linear. This does not have to be the 
case as, according to Moore’s law, the number of transistors on integrated circuit chips 
doubles every two years. Such linear assumption decreases the level of overall accuracy, 
therefore Author developed a method that assumes nonlinear behavior of EES and CS ratio 
dependence.

Author searches for simplifications in different areas that would not create any negative 
impact on the accuracy. One of such areas is the approach to compute the deformation 
work Wdef. Instead of calculating subsequent coefficients, Author uses a known algebraic 
form to determine the value for Wdef. Such formula was devised based on experimental 
data and nonlinear algorithms. From the viewpoint of computing, such estimation is much 
less resource intensive, yet as accurate as the traditional approach.

Moreover, Author together with Associates plans to develop a device that would estimate 
the precrash velocity instantly. Such device is going to use lasers to scan the deformed 
surface of the vehicle and determine the deformation ratio CS. Alternatively, such device 
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could take advantage of recently emerging technology of photogrammetry, where the in-
vestigator would only have to take photographs of deformed car body from different an-
gles. Then the software would join several pictures into one three dimensional object and 
determine the dent zone and subsequent deformation coefficients.

The bk coefficient is the slope of EES and Cs relation. When the relation is linear, it defines 
the initial value of EES, i.e. when the Cs deformation ratio coefficient is equal to 0 and only 
elastic deformation are present. For the purpose of calculations, the speed at which plas-
tic deformation occur bsg was assumed to be 3.05 m/s or 11 km/h.

Quite vital issue, often neglected, is non-centricity of deformation coefficients C1-C6 [26, 
32, 33]. To take this fact into consideration in the precrash velocity determination, the 
probabilistic weights were introduced. The non-centricity has three main sources, one is 
connected with the geometry of vehicle in question – it may differ from one side to the 
other. Another aspect is the engine bay equipment, that exhibit asymmetrical stiffness 
during collision. The final part would be the fact that after the impact the deformed chas-
sis retains its original shape and it does not have to be symmetric between left and right 
side of the vehicle.

3. Description of B-splines

If 
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This set is composed of B-splines of order 0 [1, 3]. These are characteristic functions of intervals 
[xi, xi+1].  
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dimensional object and determine the dent zone and subsequent deformation coefficients. 

The bk coefficient is the slope of EES and Cs relation. When the relation is linear, it defines the initial 
value of EES, i.e. when the Cs deformation ratio coefficient is equal to 0 and only elastic deformation 
are present. For the purpose of calculations, the speed at which plastic deformation occur bsg was 
assumed to be 3.05 m/s or 11 km/h. 

Quite vital issue, often neglected, is non-centricity of deformation coefficients C1-C6 [26, 32, 33]. To 
take this fact into consideration in the precrash velocity determination, the probabilistic weights were 
introduced. The non-centricity has three main sources, one is connected with the geometry of vehicle in 
question-it may differ from one side to the other. Another aspect is the engine bay equipment, that 
exhibit asymmetrical stiffness during collision. The final part would be the fact that after the impact the 
deformed chassis retains its original shape and it does not have to be symmetric between left and right 
side of the vehicle. 

3. Description of B-splines 

If (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=1𝐼𝐼𝐼𝐼   is a set of nodes, then: 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖0(𝑥𝑥𝑥𝑥) = �1 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 ∈ [𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+1)
0          𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                  (4) 

  

This set is composed of B-splines of order 0 [1, 3]. These are characteristic functions of intervals 
[xi, xi+1].  

Using recursive formula [31], developed by Carl de Boor, one can design B-splines of order 𝑑𝑑𝑑𝑑 ≥ 1: 

 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥) = 𝑥𝑥𝑥𝑥−𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+𝑑𝑑𝑑𝑑−𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑−1(𝑥𝑥𝑥𝑥) + 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+𝑑𝑑𝑑𝑑+1−𝑥𝑥𝑥𝑥
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+𝑑𝑑𝑑𝑑+1−𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+1

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖+1𝑑𝑑𝑑𝑑−1(𝑥𝑥𝑥𝑥)              (5) 

 

Using B-splines as an approximation gives certain advantages, for instance, 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 > 0 is in the range [xi, xi+d+1] and 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 = 0  is not in this range. Moreover, following relation takes 
place: 

 

 is in the range [xi,xi+d+1] and 
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This set is composed of B-splines of order 0 [1, 3]. These are characteristic functions of intervals 
[xi, xi+1].  

Using recursive formula [31], developed by Carl de Boor, one can design B-splines of order 𝑑𝑑𝑑𝑑 ≥ 1: 
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Using B-splines as an approximation gives certain advantages, for instance, 
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 is not in this range. Moreover, following rela-
tion takes place:
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 
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Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 
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For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 
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two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 
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Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one 
on [xd,xI-d]. What is more, there exists a relationship between the number of nodes, the 
degree of B-splines and their number:

number of B-splines = number of nodes - degree of B-spline

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes.
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with probabilistic weights

Let a set of points be given 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

. For the least-square function approximation – 
functions of two variables, a function family 
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Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

 will be used. The goal is to minimize 
the term (5) by finding the 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

 coefficient.
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

Note the entered weights 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

, are indirectly mapping the significance of points 
(xn,yn,zn) i.e. the lower the weight value, the lower the significance of (xn,yn,zn).

If 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

, such case is omitted. To choose the weights, following formula should be used: 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

Naturally, clustered points are more significant than the isolated ones (e.g. due to meas-
urement error) and more weight is assigned to those. The following expression proves 
that a problem of a least-square approximation can be reduced to the solution of a linear 
equation:

The Archives of Automotive Engineering – Archiwum Motoryzacji Vol. 87, No. 1, 2020 

 
 
∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

In this case, tensor products of B-splines takes the role of the function 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

. Functions  
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

 and 
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 

 are the first five B-splines of fourth order.

Following expressions presents 25 tensor products:
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∑ 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 1  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [𝑥𝑥𝑥𝑥𝑑𝑑𝑑𝑑 ,𝑥𝑥𝑥𝑥𝐼𝐼𝐼𝐼−𝑑𝑑𝑑𝑑]                                                  (6) 

 

Equation 6 can be reiterated as follows: B-splines of the d-order form a partition of one on [xd, xI−d ]. 
What is more, there exists a relationship between the number of nodes, the degree of B-splines and their 
number: 

number of B-splines = number of nodes - degree of B-spline 
 

For example, if we want to consider 2 splines of 3rddegree, we need exactly 5 nodes. 

4. Approximation of tensor B-spline products with probabilistic weights 

Let a set of points be given (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 . For the least-square function approximation−functions of 
two variables, a function family (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  will be used. The goal is to minimize the term (5) by finding 
the (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1

𝑀𝑀𝑀𝑀  coefficient. 

 ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛(𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 − ∑ 𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑚𝑚(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚=1 )2𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1           (7) 

 

Note the entered weights (𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛)𝑛𝑛𝑛𝑛=1𝑁𝑁𝑁𝑁 , are indirectly mapping the significance of points (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛) i.e. the 
lower the weight value, the lower the significance of (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛). 

If (𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1
𝑀𝑀𝑀𝑀 , such case is omitted. To choose the weights, following formula should be used:  

 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 �𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛′ ,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛′ ,𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝ℎ �𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛′ −𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛�<

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑧𝑧𝑧𝑧)
4

𝑁𝑁𝑁𝑁
  (8) 

 

Naturally, clustered points are more significant than the isolated ones (e.g. due to measurement error) 
and more weight is assigned to those. The following expression proves that a problem of a least-square 
approximation can be reduced to the solution of a linear equation: 

 

�
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1
⋮ ⋱ ⋮

∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1 ⋯ ∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛,𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛=1

�

∙ �
𝑎𝑎𝑎𝑎1
⋮
𝑎𝑎𝑎𝑎𝑀𝑀𝑀𝑀

� = �
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ1(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

⋮
∑ 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛ℎ𝑀𝑀𝑀𝑀(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛)𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

�

       (9) 

 

In this case, tensor products of B-splines takes the role of the function (ℎ𝑚𝑚𝑚𝑚)𝑚𝑚𝑚𝑚=1𝑀𝑀𝑀𝑀 . Functions (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖=15  and  
�𝑔𝑔𝑔𝑔𝑗𝑗𝑗𝑗�𝑗𝑗𝑗𝑗=1

5  are the first five B-splines of fourth order. 

Following expressions presents 25 tensor products: 

 
h1 = f1⊗g1, h2 = f1⊗g2, h3 = f1⊗g3,  h4 = f1⊗g4, 
h5 = f1⊗g5, h6 = f2⊗g1, h7 = f2⊗g2, h8 = f2⊗g3, 

h9 = f2⊗g4, h10 = f2⊗g5, h11 = f3⊗g1, h12 = f3⊗g2, 
h13 = f3⊗g3, h14 = f3⊗g4, h15 = f3⊗g5, h16 = f4⊗g1, 
h17 = f4⊗g2, h18 = f4⊗g3, h19 = f4⊗g4, h20 = f4⊗g5, 
h21 = f5⊗g1, h22 = f5⊗g2, h23 = f5⊗g3, h24 = f5⊗g4, 

h25 = f5⊗g5. 
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5. Results of approximation of B-spline tensor products

The data set available for mini class is relatively small. This is due to the fact, that mini ve-
hicles are less popular than regular class vehicles. Model is based on 80% of the data set 
and its validation is performed by using the remaining 20%. Method error has been estab-
lished by comparing the velocity values of the actual model and its validation, as shown 
in Figure 2.

 

Fig. 2. Probabilistic weight for each individual case

Firstly, probabilistic weights are assigned to each case and introduced into the mathe-
matical model. Then, all the necessary data is inputted, so the model can return values of 
coefficients 
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Fig. 3. Approximation of velocity as a function of deformation and mass with B-spline tensor

For comparison, a linear approximation is given by the formula:
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The B-splines [functions (fi)3
i=1] we used in the non-linear model are presented in the 

Figure 5. The B-splines [functions (gj)3
j=1] are presented in the Figure 6.
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The obtained tensor products of B-splines are shown in the Figure 7.

Fig. 7. The obtained tensor products of B-splines used in the non-linear model

Fig. 8. Plot of relative error – nonlinear model

The obtained values of the error in our method were presented in the Figure 8.
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The red line indicates the error of the cases given by the formula: 
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∑ 𝒘𝒘𝒘𝒘𝒏𝒏𝒏𝒏�

𝑩𝑩𝑩𝑩(𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏,𝒚𝒚𝒚𝒚𝒏𝒏𝒏𝒏)−𝒛𝒛𝒛𝒛𝒏𝒏𝒏𝒏
𝒛𝒛𝒛𝒛𝒏𝒏𝒏𝒏

�𝑵𝑵𝑵𝑵
𝒏𝒏𝒏𝒏=𝟓𝟓𝟓𝟓

∑ 𝒘𝒘𝒘𝒘𝒏𝒏𝒏𝒏
𝑵𝑵𝑵𝑵
𝒏𝒏𝒏𝒏=𝟓𝟓𝟓𝟓

  [−]                                                (11) 
 

where 𝐵𝐵𝐵𝐵 is a B-spline approximating the analyzed points, 𝑧𝑧𝑧𝑧𝑛𝑛𝑛𝑛 is the initial value and the whole numerator 
poses as the relative error in point (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛, 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛). The relative weighted error for nonlinear approach equates 
to 11.2%. For comparison, a weighted relative error for the linear model is 18.2%. 
Table 2 present chosen cases and compares the linear and nonlinear models. Its contents are summarized 
in Figure 9. 

Tab. 2. Parameters and errors for Mini Car Class 
Mass Cs Vt Expected 

linear 
Expected 
nonlinear 

Linear 
Error 

Nonline
ar Error 

884  0.14  23.25  25.93  25.68  0.11  0.10 
896  0.16  25.91  22.97  25.39  0.11  0.02 

where B is a B-spline approximating the analyzed points, zn is the initial value and the 
whole numerator poses as the relative error in point (xn,yn). The relative weighted error for 
nonlinear approach equates to 11.2%. For comparison, a weighted relative error for the linear 
model is 18.2%.

Table 2 present chosen cases and compares the linear and nonlinear models. Its contents 
are summarized in Figure 9.

Tab. 2. Parameters and errors for Mini Car Class

Mass Cs Vt
Expected 

linear
Expected 
nonlinear

Linear Error
Nonlinear 

Error

884  0.14  23.25  25.93  25.68  0.11  0.10

896  0.16  25.91  22.97  25.39  0.11  0.02

900  0.25  12.86  21.39  16.24  0.66  0.26

897  0.41  13.13  19.78  14.70  0.50  0.11

880  0.47  16.66  16.33  15.60  0.02  0.06

Fig. 9. Performance of linear and non-linear models
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6. Conclusions

Author is presenting a new approach to precrash velocity determination. Nonlinear ap-
proach proves to be a superior method. Despite a small database, the nonlinear method 
shows improvement over the linear approach. The mean error for the nonlinear approach 
is equal to 11.2%, whereas the linear method comes with an error of 18.2%.

Although, the advantage is obvious, this does not mean that this is the finished product. 
The method can be still further improved, for example by adding more deformation control 
points, enhancing the deformation profile and thus improving the overall accuracy of the 
method. Moreover, since this is only a mathematical model, effort is put into developing 
a standalone app or a device that would present the user with instant value of precrash 
velocity. This could happen by either manually inputting data needed, like mass, deforma-
tion depth, dent zone width, etc. or by 3D scanning the vehicle to limit the manual inputting 
to a minimum.
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